当前位置: > 论文中心 > 教育论文 >

大数据及其关键技术的教育应用实证分析(上篇)(2)

时间:2015-11-18 09:59 点击:
(2)教育大数据关键技术 近年来,随着大数据的推进与发展,教育大数据处理与分析已经成为推动教育改革与发展的驱动力,引起了各国政府和教育行政部门的高度重视。2012年10月美国教育部发布了《通过教育数据挖掘和学

  (2)教育大数据关键技术
  近年来,随着大数据的推进与发展,教育大数据处理与分析已经成为推动教育改革与发展的驱动力,引起了各国政府和教育行政部门的高度重视。2012年10月美国教育部发布了《通过教育数据挖掘和学习分析促进教与学》(EnhancingTeachingandLearningthroughEducationalDataMiningandLearningAnalytics)报告。[7]力图通过教育大数据分析挖掘,促进"大数据"教育应用,从而为教育发展抢得先机。
  大数据为海量教育数据的存取提供了技术基础,但原始的教育数据只是教育大数据的基础,只有通过对采集到的各种数据进行教育数据挖掘,构建学习分析模型,发现教育变量之间的关系,并实现赋予数据相关意义,才能使数据转变为信息;信息进_步经过分析和综合,形成知识;最后通过实践运用,知识才上升到智慧层次。[8]因此,教育数据挖掘和学习分析技术是教育大数据的关键技术。
  1.教育数据挖掘
  教育数据挖掘(EducationDataMining)是综合运用数理统计、人工智能与机器学习和数据挖掘等技术与方法,对教育原始数据进行分析处理,通过构建数据模型,对学习者的学习结果与学习内容、学习资源和教学行为等变量进行相关关系分析,从而有效地预测学习者未来的学习趋势。[9]并为教育工作者、学习者、学生家长、教育教学研究者以及教学软件开发者提供支持,实现教育系统中教育资源的良性互动,最终实现改进学习的目的。教育数据挖掘流程具体如图2所示。
  2.学习分析
  学习分析(LearningAnalytics)的研究对象是学生及其学习环境,目的是通过对教育海量数据的分析和建模,发现潜在问题,优化和理解学习,预测学习者在学习中的进步和表现。学习分析具体过程如图3所示。显而易见,学习分析技术就是围绕学习者在学习过程中产生的各种信息数据,利用各种数学建模方法和数据处理技术来解释这些数据,并根据结果数据与分析信息,对学习过程与情境进行探究,并进一步发现学习的规律,为优化和完善教学提供相应的反馈,持续地促进学习者的学习。学习分析技术利用数据挖掘、数据解释与数据建模的优势,对学习平台中积累的大量数据信息进行采集、存储、分析和表示,并运用分析测量结果对学习者学习行为进行评估、预测和干预,为个别学生量身定制更有效的教育,进而改善和提升教与学的质量与效能,实现改善教学和促进学习的目的。
  除了学习分析和数据挖掘这两大教育大数据关键技术,近年来慕课、微课、翻转课堂、社会网络软件、云计算、Moodle等网络学习开源平台、WEB2.0技术都可以纳入教育大数据的技术范畴。
  二、大数据促进教育变革随着教育领域各种大数据技术的应用,我们已经进入一个数据驱动教学、分析变革教育的大数据时代。虽然技术还没有给教育带来如1987年AlfredBork所预言那样的变革[12],但技术具有拓展、增强或者变革人类学习的潜力,科技进步不可避免地带来了教育的革新,并且对教育发展带来了深远的影响。如,大规模数据分布式处理技术实现了结构化与非结构化数据存储;云计算技术实现了教育资源的共建共享;社会性交互软件促进了学习型社会的构建;MOOCs与翻转课堂实现了个性化学习构建;开源学习管理系统实现了学习过程管理。大数据技术在教学领域的应用革新了教育思维方式、重构了教学评价方式、颠覆了传统教学模式、实现了个性化教育,教育大数据背景下教学的规训与教化在撤退,支持和服务在推进。[13]
  (一)数据挖掘与学习分析有助于教学决策和评务价

   论文榜(www.zglwb.com),是一个专门从事期刊推广、投稿辅导的网站。
本站提供如何投稿辅导,寻求投稿辅导代理,快速投稿辅导,投稿辅导格式指导等解决方案:省级投稿辅导/国家级投稿辅导/核心期刊投稿辅导//职称投稿辅导。


栏目列表
联系方式
推荐内容
 
QQ在线咨询
投稿辅导热线:
189-6119-6312
微信号咨询:
18961196312